
 Scanning the parameter space of holographic superconductors

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP08(2009)062

(http://iopscience.iop.org/1126-6708/2009/08/062)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 10:20

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/08
http://iopscience.iop.org/1126-6708/2009/08/062/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
8
(
2
0
0
9
)
0
6
2

Published by IOP Publishing for SISSA

Received: July 21, 2009

Accepted: July 29, 2009

Published: August 17, 2009

Scanning the parameter space of holographic

superconductors

Obinna C. Umeh

Department of Mathematics and Applied Mathematics, University of Cape Town,

Rondebosch, 7701, Cape Town, South Africa

E-mail: umeobinna@gmail.com

Abstract: We study various physical quantities associated with holographic s-wave su-

perconductors as functions of the scaling dimensions of the dual condensates. A bulk scalar

field with negative mass squaredm2, satisfying the Breitenlohner-Freedman stability bound

and the unitarity bound, and allowed to vary in 0.5 unit intervals, were considered. We

observe that all the physical quantities investigated are sensitive to the scaling dimensions

of the dual condensates. For all the m2, the characteristic lengths diverge at the critical

temperature in agreement with the Ginzburg-Landau theory. The Ginzburg-Landau pa-

rameter, obtained from these length scales indicates that the holographic superconductors

can be type I or type II depending on the charge and the scaling dimensions of the dual

condensates. For a fixed charge, there exists a critical scaling dimension, above which a

holographic superconductor is type I, below which it becomes a type II.

Keywords: AdS-CFT Correspondence, Gauge-gravity correspondence

ArXiv ePrint: 0907.3136

c© SISSA 2009 doi:10.1088/1126-6708/2009/08/062

mailto:umeobinna@gmail.com
http://arxiv.org/abs/0907.3136
http://dx.doi.org/10.1088/1126-6708/2009/08/062


J
H
E
P
0
8
(
2
0
0
9
)
0
6
2

Contents

1 Introduction 1

2 Background equations of motion 3

3 Phase transitions for various condensates 5

4 Conductivity 7

4.1 Conductivity in the (2+1)-dimensional dual field theory 7

4.2 Conductivity in the (3+1)-dimensional dual field theory 7

4.3 Superfluid density and magnetic penetration depth 8

5 Perturbative solution 9

5.1 Superconducting coherence length 11

5.2 Magnetic penetration depth 13

6 Conclusion 17

A Conductivity in (2+1)-dimensional boundary theory (λ
−
) 18

B Conductivity in (2+1)-dimensional boundary theory (λ+) 18

C Conductivity in (3+1)-dimensional dual field theory 18

1 Introduction

The correspondence between gravitational theories in anti-de Sitter spacetime and certain

quantum field theories [1] provides a unique way in which to study the strongly coupled sec-

tor of many quantum field theories. This remarkable result from string theory has allowed

some insight [2] to be gained into why the quark-gluon plasma produced at the relativis-

tic heavy ion collider (RHIC) behaves like an almost perfect fluid [3] (in contrast to the

prediction of a high viscosity by perturbative quantum chromodynamics (QCD) [4]). This

remarkable result inspired the application of AdS/CFT techniques to certain condensed

matter systems. Phenomena such as the Hall effect and the Nernst effect appear to have

their dual gravitational descriptions [5–7].

This technique has been employed recently, to shed some light on strongly coupled

systems that undergo superconducting instabilities at a critical temperature (see [8, 9]

for a review). It is understood [10, 11] that a quantum field theoretic description of

condensed matter systems is possible in the vicinity of the quantum critical point (QCP),
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where the relevant scale invariant theories are similar to field theories describing second-

order phase transitions, for example Ginzburg-Landau theory. As the QCP is approached,

systems1 with the dynamical critical exponent z = 1 become invariant under re-scalings

of time and distance. This scale invariant symmetry forms part of the larger conformal

symmetry group SO(d+ 1, 2) [9, 12] of the quantum field theory, where d is the number of

spatial dimensions. The emergence of this symmetry near the QCP implies that its dual

gravitational description must reside in anti-de Sitter spacetime with an additional spatial

dimension [8, 13].

According to the model of holographic superconductivity proposed in [14], one can

study strongly coupled s-wave superconductors, at a finite temperature and chemical po-

tential, by considering a gravitational theory with an action which has a black hole solution.

The black hole, in this case, is charged under a U(1) gauge field with a minimally cou-

pled complex scalar field Ψ. The no hair theorem does not apply if the scalar field has

a non-trivial coupling to the gauge field [15]. In this set up, the symmetry breaking in

the bulk theory, which corresponds to a quantum phase transition to the superconducting

phase in the boundary theory, is triggered by a position dependent negative mass squared

formed from the gauge covariant derivative [16]. Its contribution becomes significant near

the horizon of the black hole, thereby forcing the scalar field to condense.

This model has been studied in various limits by several authors. For example, the

authors of [17–22] mapped the phase diagram of the holographic superconductors in the

presence of an external magnetic field. They also found and analyzed the physical properties

of the vortex and droplets solutions for a scalar field with m2l2 = −2 (l will be defined

defined shortly.). The hydrodynamics of holographic superconductors was studied in detail

in [23]. The effect of a vector current on the order of the phase transition was explored

in [24]. The authors of [25] showed that superconductivity is possible for a scalar field of

various masses in d = 3 and d = 4 bulk dimensions. A proposal on how to calculate the

superconducting characteristic length analytically, in the vicinity of QCP, was suggested

in [26]. The effects of gravitational backreaction were considered, and a study made, for

m2l2 = −2, of the type of the holographic superconductors in [27, 28]. So far there has not

been any work which discusses the relationship between the physical quantities associated

with the model and the scaling dimensions of the dual condensates.

The objective here is to go beyond the extension of the model already discussed in [25]

and to include a wider range of values of m2, satisfying the Brietenlohner-Freedman (BF)

stability bound [29] and the unitarity bound. We find it most convenient to choose values

of m2 in the interval of 0.5 units. We shall focus our attention primarily on scalar fields

with fall-offs at the AdS boundary, which are normalizable. Based on this behavior at the

boundary, the scalar field Ψ naturally split into two pieces, Ψλ
−

and Ψλ+
, with slower and

faster fall-offs respectively. These describes different condensates with distinct supercon-

ducting phases and different scaling dimensions. We shall calculate each physical quantity

associated with the condensates at a fixed temperature and for each value of m2, which will

allow us to ascertain the dependence of this physical quantity on the scaling dimension.

1For example, spin systems.
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This report is organized as follows: In section 2, we define our conventions and derive

the equations of motion. In section 3, we show that the superconducting phase of holo-

graphic superconductors of the class Ψλ
−

is very different from that of the class Ψλ+
. We

present a discussion of the conductivity in section 4 and show that in the limit in which

the frequency ω approaches zero (ω ≈ 0), the superfluid density can be obtained from the

frequency dependent conductivity. In section 5, we solve the equations of motion perturba-

tively in order to calculate the characteristic lengths and the Ginzburg-Landau parameter.

The conclusion is provided in section 6, while various results relating to the conductivity

in the boundary theory are presented in the appendices.

2 Background equations of motion

The action of a gravitational theory with a d + 1 black hole solution in anti de Sitter

spacetime AdSd+1 coupled to a matter field is given by

I = IEH + Imatter, (2.1)

where IEH is the Einstein-Hilbert action with a negative cosmological constant Λ

IEH =
1

2κ2
d

∫

dd+1x
√−g

{

R+
d(d − 1)

2l2

}

, (2.2)

with κd related to Newton’s gravitational constant in d−dimensions κd = 8πGN . The

cosmological constant Λ depends on the radius of curvature of the anti de Sitter spacetime,

l, Λ = d(d−1)/2l2 . Imatter is the action for the Abelian Higgs system expanded to quadratic

order in the scalar field

Imatter =
1

2κ2
d

∫

dd+1x
√−g

{

−1

4
FµνFµν − |∂Ψ − iqAΨ|2 −m2|Ψ|2

}

, (2.3)

where the gauge field and the scalar field are coupled through the gauge covariant derivative,

Dµ = ∂µ + iqAµ. Here ∂µ is the spacetime covariant derivative, Aµ is the gauge field, with

associated field strength Fµν , and Ψ is a complex scalar field. In the probe limit, the matter

field can be re-scaled as

Aµ → Aµ/q (2.4)

Ψ → Ψ/q,

which ensures that the quadratic potential scales as V
(

|Ψ|2
)

→ V
(

|Ψ|2
)

/q2 and the entire

matter action as Imatter → Imatter/q
2. In the limit q → ∞, the action for Abelian-Higgs

system Imatter decouples from the Einstein-Hilbert action IEH. As noted in [14], the probe

approximation remains valid as long as Ψ and scalar potential Φ are not large in the Planck

limit. Another way to implement the probe approximation suggested in [30], is to consider

a formal expansion of the full backreacted geometry in inverse powers of q. Then the

leading order matter solutions will depend on q as O(q−1), while the leading order metric

O(q2) receives O(q−2) corrections.
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The equations of motion for the scalar field and Maxwell fields reads

1√−gDµ

(√−ggµνDνΨ
)

= m2Ψ, (2.5)

1√−g∂µ
(√−ggνλgµσFλσ

)

= gµνJµ, (2.6)

where the current Jµ is given by

Jµ =
(

i
(

Ψ∂̄µΨ − ∂µΨΨ̄
)

+ 2AµΨΨ̄
)

. (2.7)

We consider the d+ 1 planar black hole ansatz

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dxidx

i, (2.8)

where f(r) = r2

l2
(1− rd

0

rd
) and i runs from 1 to (d− 2). Here r = r0 is the event horizon and

the Hawking temperature of the black hole is given by

T =
r0d

4πl2
. (2.9)

It is more convenient to make a change of coordinates z = r0/r, so that the metric (2.8)

becomes

ds2 =
l2α(T )

z2

(

−h(z)dt2 + dxidx
i
)

+
l2dz2

z2h(z)
, (2.10)

where α(T ) ≡ 4πT = r0d/l
2 and h(z) = (1−zd). Here z = 1 and z = 0 is the event horizon

and AdS boundary respectively. We consider the following ansatze2 for the matter fields

Aµdx
µ = Φ(z)dt and Ψ = Ψ(z). Using the ansatze in the equations of motion, the scalar

and gauge fields yield respectively

Ψ′′ +

(

h′

h
+
d− 1

z

)

Ψ′ +
Φ̃2Ψ

h2
− m2

hz2
Ψ = 0, (2.11)

and

Φ̃′′ − d− 3

z
Φ̃′ − 2Ψ2

hz2
Φ̃ = 0, (2.12)

where Φ̃ ≡ Φ/α(T ) and l = 1. Regularity at the horizon requires

Ψ′
∣

∣

z=1
=
m2Ψ

d

∣

∣

z=1
, (2.13)

Φ̃
∣

∣

z=1
= 0.

Near the AdS boundary the scalar field and the scalar potential behave as

Ψ = Ψλ
−

zλ− + Ψλ+
zλ+ + ... (2.14)

Φ̃ = µ− ρzd−2 + ...,

2From these ansatze we can see that the phase of the scalar field is fixed.
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where λ is the dimension of the dual operator, which satisfies the relation

λ (λ− d) = m2, (2.15)

with solutions λ± = 1
2

(

d±
√
d2 + 4m2

)

. The stability of AdS vacuum, requires that

the scalar field of negative mass squared must satisfy the BF bound [29], m2 ≥ −d2/4,

and in general the unitarity bound [31], λ ≥ (d − 2)/2. In the analysis that follows, we

consider the values of m2 within the range −d2/4 ≤ m2 < −d2/4 + 1. Both modes of

the asymptotic values of the scalar fields whose m2 are within this range are normalizable,

except at the saturation of the BF bound. For m2 ≥ d2/4+1, only the λ+ is normalizable,

since λ− is below the unitarity bound. As mentioned in the introduction our primary focus

is on the scalar fields with m2 within this range
(

−d2/4 ≤ m2 < −d2/4 + 1
)

, which we can

achieve by considering m2 in 0.5 unit interval. The fixed interval makes the analysis and

interpretation of the results less challenging.

The AdS/CFT dictionary [32, 33] relates the constant coefficients of the asymptotic

solutions (equation (2.14)) to physical quantities in the boundary theory. The coefficients

Ψλi are coefficients of the normalizable modes of the scalar field equation, they both cor-

respond to expectation values in the dual field theory Ψλi = 〈Oλi〉. µ and ρ correspond to

the chemical potential and charge density in the dual field theory, respectively.

3 Phase transitions for various condensates

Apart from the trivial solutions Ψ = 0 and Φ̃ = µ− ρzd−2, a non-trivial solution to equa-

tions (2.11) and (2.12) which describe the superconducting phase in the dual field theory,

exist below a critical temperature. The critical temperature is defined, for Ψλ
−

, when Ψλ+

vanishes and for Ψλ+
, when Ψλ

−

vanishes. We present the solutions to equations (2.11)

and (2.12) obtained numerically in figure 1.

The temperature scales as T ∼ ρ1/2 and T ∼ ρ1/3 in the 2+1 and 3+1 boundary theory

respectively. Notice that the condensates of the class Ψλ
−

converge at 〈O〉 /Tc ≈ 10 before

they collectively diverge. The signatures of the divergence near zero temperature become

more pronounced as λ approaches the unitarity bound. A similar divergence was observed

in [14] for λ = 1 and was attributed to the probe approximation. But recent study [28]

which considered gravitational backreaction, also show some signatures of divergence for

λ = 1 when the charge q becomes large. This divergence might be an artifact of large N.

There are obvious differences between the superconducting phase of Ψλ
−

and that of Ψλ+
.

The condensates of the class Ψλ
−

show a gradual transition to the superconducting phase.3

The amount of condensate in each case can be calculated from the numerical solutions

to equations (2.11) and (2.12) at a fixed temperature T/Tc, in the vicinity of QCP. The

results are shown in figure 1 (right). There appears to be a discontinuity in the amount of

condensates between holographic superconductors of the class Ψλ
−

and that of class Ψλ+

3In d = 4 bulk dimensions the range of permissible values of m
2 is small hence we did not distinguish

between the two classes in the graphical representation. All the features as explained for the 2+1 boundary

theory are also present.

– 5 –



J
H
E
P
0
8
(
2
0
0
9
)
0
6
2

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

���������
T

Tc

���������������������������
<O>1�Λ

Tc

d=3 Λ-

Λ=3�2

Λ=1.146

Λ=1

Λ=0.887

Λ=0.793

Λ=0.709

Λ=0.634

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

���������
T

Tc

���������������������������
<O>1�Λ

Tc

d=3 Λ+

Λ=1.853

Λ=2

Λ=2.112

Λ=2.207

Λ=2.290

Λ=2.366

Λ=3

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

���������
T

Tc

���������������������������
<O>1�Λ

Tc

d=4

Λ=2

Λ=4

Λ=3

Λ=2.7

Λ=1.2

Figure 1. The condensates as a function of temperature for various condensates Oλ in the boundary

theory. The figures are labelled by the scaling dimensions of the dual condensates. The upper left

graphs are condensates dual to the modes of the scalar field with slower fall-off Ψλ
−

, while the

upper right figure shows the condensates dual to the modes of scalar fields with faster fall-off Ψλ+
.

The graphs are labelled by λ
−

and λ+ to distinguish between the two classes of condensates in the

2 + 1 boundary theory. Below the two graphs is the condensates as a function of temperature for

various condensate Oλ in 3 + 1 dual field theory
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Figure 2. The amount of condensates as a function of the dimension of the dual operator (right)

computed at different fixed temperatures. The dots represent the actual value and the continuous

line is an interpolation between the actual values. This from of representation is used in the rest of

the report.

at λcrit = λBF in both 2 + 1 and 3 + 1 boundary theories. This might be an indication

that the two classes have different superconducting coherence factors [14]. The height of

the discontinuous gap increases as the temperature decreases.

The dependence of the critical temperatures for various condensates on the dimension

of the dual operator is shown in figure 3. The condensates with high scaling dimensions have

relatively very low critical temperature. In general as the critical temperature decreases as

the dimension of dual condensate increases in both the 3 + 1 and 2 + 1 boundary theories.

– 6 –



J
H
E
P
0
8
(
2
0
0
9
)
0
6
2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

Λ

�������������������
Tc

"######Ρ

d=3

1 2 3 4 5
0.10

0.15

0.20

0.25

0.30

0.35

0.40

Λ

�������������������
Tc

"######Ρ3

d=4

Figure 3. The dependence of the critical temperature on the dimensions of the dual condensates

in 2 + 1 and 3 + 1 boundary theories

.

4 Conductivity

Within the frame work of the AdS/CFT correspondence, the conductivity in the boundary

theory can be calculated from the Maxwell field in the bulk theory. This can be done in the

probe limit by perturbing the Maxwell field at zero spatial momentum on the fixed black

hole background: With the ansatz for the perturbed Maxwell field, δAx = Ax(z)e
iωtdx, a

linearized equation of motion results

A′′
x +

(

h′

h
− d− 3

z

)

A′
x +

(

ω

h2
− 2Ψ2

z2h

)

Ax = 0. (4.1)

Equation (4.1) is solved with an ingoing wave boundary condition [34] near the horizon of

the black hole in order to suppress near horizon oscillations:

Ax(z) = h(z)−4πiω/TAx(z). (4.2)

4.1 Conductivity in the (2+1)-dimensional dual field theory

In an odd number of dimensions (e.g. d = 3) the solution to the Maxwell’s equation (4.1)

behaves near the boundary as

Ax = A(0) +A(1)z + ... (4.3)

From Ohm’s law and the dictionary of AdS/CFT correspondence, the conductivity becomes

σ(ω) =
A(1)

iωA(0)
. (4.4)

The plots of the real and imaginary part of the conductivity against the frequency normal-

ized by individual condensate are shown in appendix A, figure 13 and appendix B, figure 14

for the two classes of holographic superconductors in the 2 + 1 boundary theory.

4.2 Conductivity in the (3+1)-dimensional dual field theory

When the bulk dimension is even (e.g. d = 4), there exists a logarithmic divergence of the

Maxwell’s field in the action 2.1:

Ax = A(0) +A(2)z2 +A(0)ω2z2 log
Λ

z
. (4.5)
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Figure 4. Superfluid density below the critical temperature in the boundary theory.

A boundary counter term may be added to remove the divergence [35], so that the con-

ductivity becomes [25]

σ(ω) =
2A(2)

iωA(0)
+
iω

2
(4.6)

The numerical solutions to equation (4.1) in the 3 + 1 boundary theory, is shown in ap-

pendix C, figure 15 and for the frequency normalized by the individual superconducting

condensate. We could not resolve the delta function at ω = 0 numerically. However, it can

be seen from the Kramers-Kronig relation

Im[σ(ω)] = − 1

π
P

∫ ∞

−∞

Re[σ(ω′)]dω′

ω′ − ω
, (4.7)

that there is a delta function at ω = 0 for all the condensates, since ω = 0 is a pole in the

imaginary part of the conductivity. The gap frequency ωg remain approximately the same

for all the condensates ωg/Tc ≈ 8, irrespective of the number of bulk dimensions.

4.3 Superfluid density and magnetic penetration depth

In the limit ω → 0, the superfluid density ns is defined as the coefficient of the pole

in the imaginary part of conductivity Im[σ] = ns/ω, where ns is the superfluid density.

The results of the superfluid density computed by solving equation (4.1) in this limit, is

shown in figure 4. The vanishing of ns at the critical temperature is in agreement with the

Ginzburg-Landau theory.

The dependence of the ns on the scaling dimension calculated at various fixed tem-

peratures below Tc is shown in figure 5. Observe that for λ ≥ λBF, ns is not sensitive to
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Figure 5. Superfluid density as function of the dimension of the dual operator, at different fixed

temperatures

changes in λ, suggesting that this class of holographic superconductors may not be stable

against perturbations by external magnetic field, since ns is related to the current which

generate the electromagnetic field if the boundary theory was gauged.

Thus the superfluid density is related to the magnetic penetration depth λm through

the first London equation

J = −e∗nsA, (4.8)

where e∗ is the charge of the order parameter. Using the Maxwell’s equation for the curl

of the magnetic field and assuming that the current at the boundary can generate its own

magnetic field,4 the relation between the superfluid density and the magnetic penetration

depth appear more explicitly

−∇2B = ∇× (∇×B) = 4π∇× J = −4πns∇×A = 4πnsB (4.9)

∇2B =
1

λ2
m

B,

where λ2
m = 1

4πns
. The magnetic penetration depth obtained using this relation for both

classes of holographic superconductors is shown in figure 6. Notice that the magnetic

penetration depth diverges at Tc which is an expected behavior. Its dependence on the

dimension of the dual operator is presented in figure 7

5 Perturbative solution

At the quantum critical point, equations (2.11) and (2.12) can be solved exactly:

Ψc = 0, (5.1)

Φ̃ = qc

(

1 − zd−2

d− 2

)

.

Other solutions to equations (2.11) and (2.12) can be found in the vicinity of quantum

critical point, by a perturbative expansion, since the superconducting condenstate behaves

as (see section 3)

〈O〉 ≈ Tc (1 − T/Tc)
1/2 (5.2)

4i.e weakly gauging the boundary theory as suggested in [28].
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Figure 6. The magnetic penetration depth below the critical temperature in the dual field theory.
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and vanishes at Tc. The results of the numerical calculations in section 3 show that at the

critical temperature µ = ρ = qc.
5

Other solutions to equations (2.11) and (2.12) may be obtained to higher order in

ǫ = (1 − T/Tc) and in the manner which still yield the expected fall offs at the AdS

boundary.

Ψ(z) = ǫ1/2Ψ1(z) + ǫ3/2Ψ2(z) + ǫ5/2Ψ3(z) + ... (5.3)

Φ̃(z) = Φ̃c(z) + ǫΦ̃1(z) + ǫ2Φ̃2(z) + ...

5We use the conventions of [26].
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Using equation (5.3) in equations (2.11) and (2.12) gives
[

zd−1 d

dz

h(z)

zd−1

d

dz
− m2

z2
+

Φ̃2
c

h(z)

]

Ψ1 = 0, (5.4)

[

zd−3h(z)
d

dz

1

zd−3

d

dz

]

Φ1 −
2Φ̃cΨ

2
1

z2
= 0. (5.5)

The equations are written in a form most convenient for use in the following analysis.

Equation (5.4) decouples from equation (5.5) to first order in the perturbative expansion.

We make the following definitions for clearer presentation:

Lψ :=

[

zd−1 d

dz

h(z)

zd−1

d

dz
− m2

z2
+

Φ̃2
c

h(z)

]

(5.6)

Lφ :=

[

zd−3h(z)
d

dz

1

zd−3

d

dz

]

.

5.1 Superconducting coherence length

The correlation length of the order parameter is related to the superconducting coherence

length ξ, which appears as a complex pole of the static correlation function of the order

parameter fluctuation in Fourier space [26]:
〈

O(~k)O(−~k)
〉

∼ 1

|~k|2 + 1/ξ2
. (5.7)

Following the technique of AdS/CFT correspondence, this correlation length may be cal-

culated within the probe approximation by perturbing the Maxwell and scalar fields on a

fixed black hole background. We consider only the linear perturbation, with fluctuations

of the fields in the x−direction, in the form

δAµ (z, x) dxµ = [Ax (z, k) dx+Ay(z, k)dy + φ (z, k) dt] eikx, (5.8)

δψ (z, x) =
1

α(T )

[

ψ(z, k) + iψ̃(z, k)
]

eikx.

Using (5.8) on the perturbed Maxwell and scalar fields give the following eigenvalue

equations

ψ′′ +

(

h′

h
+
d− 1

z

)

ψ′ − k̃2ψ

h
+

Φ̃2ψ

h2
+

2Φ̃Ψ

h2
φ− m2

z2h
ψ = 0, (5.9)

φ′′ − d− 3

z
φ′ − k̃2φ− 2Ψ

z2
φ− 4Φ̃Ψ

hz2
ψ = 0, (5.10)

A′′
y +

[

h′

h
− d− 3

z

]

A′
y −

k̃2

h
Ay −

2Ψ2

z2h
Ay = 0, (5.11)

where k̃ = k/α(T ). Regularity at the horizon implies that

φ = 0 (5.12)

ψ′ = − k2ψ

dzd−1
+

− m2ψ

dzd+1
+

A′
y = − k2Ay

dzd−1
+

− 2|Ψ|2Ay
dzd+1

+

.
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Analytical treatment is possible for the eigenvalue equations in the limit T → Tc [26].

Using the series expansion (5.3) in equations (5.9), (5.10) and (5.11) yield

Lψψ = k̃2ψ − 2ǫΦ̃cΦ̃1

h(z)
ψ − 2ǫ1/2Φ̃cΨ1

h(z)
φ (5.13)

Lφφ = k̃2φ+
2ǫΨ2

1

z2
φ+

4ǫ1/2Φ̃cΨ1

z2
ψ.

The solution to equation (5.13) of interest are those that satisfy the regularity condition

at the horizon (5.12) and have an expected fall off at the AdS boundary (equation 2.14).

One trivial solution is the zeroth order solution φ0 and ψ0:

ψ0 = Ψ1 (5.14)

φ0 = 0

Non-trivial solutions can be found by a series expansion around the zeroth order solution

in powers of ǫ

ψ = Ψ1 + ǫψ1 + ǫ2ψ2 + ... (5.15)

φ = ǫ1/2φ1 + ǫ3/2φ2 + ...

k̃2 = ǫk̃2
1 + ǫ2k̃2

2 + ...

Substituting the expansion (5.15) into equation (5.13) yields

Lψψ = k2
1Ψ1 −

2Φ̃cΨ1

h(z)

(

Φ̃1 + φ1

)

(5.16)

Lφφ1 =
4Φ̃cΨ

2
1

z2
. (5.17)

In this approximation it is easy to see that the equations of motion for Φ1 and φ1 only

differ by a factor of two. Equation (5.16) can be solved for k by defining an inner product

for the states ψ1 and ψ2 which satisfy the boundary condition at the AdS boundary and

is well behaved at the horizon (5.12).

〈ψIψII〉 =

∫ 1

0

dz

zd−1
ψ∗
IψII . (5.18)

Because Lψ is hermitian for non-zero negative mass squared, taking the inner product of

equation (5.16) gives

〈Ψ1|Lψ|ψ1〉 = k2
1 〈Ψ1|Ψ1〉 −

〈

Ψ1
2Φ̃cΨ1

h(z)

(

Φ̃1 + φ1

)

〉

(5.19)

Using the inner product (5.18) and the constraint LψΨ1 = 0 in equation (5.19) we obtain

k2
1 〈Ψ1|Ψ1〉 =

〈

Ψ1
2Φ̃cΨ1

h(z)
Φ̃1

〉

+ 2

∫ 1

0
dz

Φ̃cΨ
2
1

zd−1h(z)
φ1. (5.20)
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Equation (5.20) may be simplified by considering the equation of motion for the mode Ψ2:

LψΨ2 =
2Φ̃cΨ1

h(z)
Φ̃1. (5.21)

Since equation (5.18) is well defined for Ψ1 and it is hermitian, the first term in the right

hand side of equation (5.20) is zero. Using equation (5.18) and k̃2 = ǫk̃2
1 , the eigenvalue k̃

in a first order approximation may be written as.

k̃2 = ǫ
N

D
+ O(ǫ2) (5.22)

where

N = 2

∫ 1

0
dz

Φ̃cΨ
2
1

zd−1h(z)
φ1 (5.23)

D =

∫ 1

0

Ψ2
1

zd−1

This result was first derived in [26] for m2 = −2, and it is shown to hold for all the

masses that satisfy the unitarity bound in d−dimensions, except for d = 2 where the scalar

potential diverges. Now the superconducting coherence length is given by

ξ =
ǫ−1/2

α(T )

√

D

N
+ O(ǫ2) (5.24)

Figure 8 shows the results obtained from calculating the ξ using equation (5.24) for various

condensates. We have used the boundary conditions obtained in section 3 to solve for Ψ1

and φ1.

The numerical accuracy becomes very unsatisfactory for m2 = 0. As a result, we did

not include it in the figure 8. The dependence of the superconducting correlation length

on the scaling dimensions of the dual condensates is shown in figure 9.

5.2 Magnetic penetration depth

As stated in section 4, the magnetic penetration depth may be calculated from the London

current. This can also be calculated by solving equation 5.11 perturbatively in the limit

T → Tc at zero frequency and momentum. The relevant portion of the Maxwell’s equation

is given by

zd−3 d

dz

h

zd−3

dAy
dz

− 2Ψ2

z2
Ay = 0. (5.25)

The Maxwell field can be expanded as A = A0 + ǫA1 in the neighborhood of the QCP,

which leads to the following equations

d

dz

h

zd−3

d

dz
A0 = 0 (5.26)

d

dz

h

zd−3

d

dz
A1 −

2Ψ1

zd−1
A0 = 0, (5.27)
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Figure 8. Superconducting coherence length of holographic superconductors plotted as a function

of temperature.
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Figure 9. Superconducting correlation length as a function λ.

where the subscript,y, has been dropped for clarity. One of the solutions to equation (5.26),

which satisfies the required boundary conditions is

A0 = C, (5.28)

where C is a constant. Hence the first order mode becomes

dA1

dz
= −2A0z

d−3

h(z)

∫

z1
0

dz0
|Ψ1(z0)|2
zd−1
0

(5.29)

Integrating this expression (5.29) yields

A1(z) = A0 − 2A0

∫ 1

0
dz
zd−3

h(z)

∫ 1

z0

dz0
|Ψ1(z0)|2
zd−1
0

+ O(ǫ2) (5.30)

Here A0 is the constant of integration. Using A = A0 + ǫA1

A(z) = A0 − 2ǫA0

∫ 1

z
dz
zd−3

h(z)

∫ 1

z0

dz0
|Ψ1(z)|2
zd−1
0

+ O(ǫ2). (5.31)
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Near the boundary h(z) ≈ 1

A(z) = A0 − 2ǫA0

∫ 1

z
dzzd−3

∫ 1

z0

dz
|Ψ1(z0)|2
zd−1
0

+ O(ǫ2). (5.32)

From the dictionary of AdS/CFT correspondence, the current is identified as

〈j〉 = − 1

κ2
d

(

4πTc
d(d− 2)

)

ǫ

∫ 1

0
dz

Ψ2
1

zd−1
A0(x) + O(ǫ2), (5.33)

and, for ǫ = (1 − T/Tc), the current becomes

〈j〉 = − 1

κ2
d

(

4πTc
d(d− 2)

)

(1 − T/Tc)

∫ 1

0
dz

Ψ2
1

zd−1
A0 + O(ǫ2) (5.34)

The magnetic penetration depth is then defined (see equation 4.9) as

λm =

√

[

1

κ2
d

(

4πTc
d(d− 2)

)

(1 − T/Tc)

∫ 1

0
dz

Ψ2
1

zd−1

]−1

(5.35)

Using equation (5.24) and (5.35), the Ginzburg-Landau parameter becomes

κ =
λm
ξ
. (5.36)

To solve for λm we use the relation Ψ = ǫ1/2Ψ1 + O(ǫ) to compute Ψ instead of Ψ1.

This offers some numerical simplification. The results of the numerical computations are

presented in figure 10. The dependence of the magnetic penetration depth λm on the

scaling dimensions of the dual condensates is shown in figure 11.

Observe that the results of the magnetic penetration depth, calculated using a per-

turbative approach and the one calculated from superfluid density are in agreement. This

agreement show that the perturbative treatment captures the physics of interest in the

vicinity of the QCP.

The Ginzburg-Landau parameter κ = λm/ξ can be calculated from equations (5.24)

and (5.35). The results obtained are plotted in figure 12 against the dimension of the dual

condensate.

In Ginzburg-Landau theory, the coefficient κ classifies superconductors into two types,

i.e κ < 1
√

2 for type I superconductors and κ > 1
√

2 for type II superconductors. If our

boundary theory was gauged, the results in figure 12 show that at λ = λBF, there is a

change in the relative size of κ. An obvious interpretation is that for λ < λBF supercon-

ducting condensates are of type II, while for λ > λBF they are of type I. It is interesting

to see that similar clear distinction also exist for holographic superconductors. Although,

we should note that the London current also depends on q, which was scaled away in the

probe limit. The effect of large but finite q is to ensure that λm is greater than ξ, i.e the

condensate must be type II. Despite being large, there are still indications that a holo-

graphic superconductor can be type I. This result is in agreement with Maeda et. al. [26],

who suggested that holographic superconductors which have low critical temperature are
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Figure 10. Magnetic penetration depth below the critical temperature in the superconducting

phase.
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Figure 12. Ginzburg-Landau parameter against λ.

type I. But Hartnoll et. al. [28] showed that holographic superconductor corresponding to

dimension one operator, which they studied with high accuracy is a type II. These results

are not in any way contradicting, as we have seen that both deductions are correct limits

of the larger class of condensates considered here.
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6 Conclusion

We have studied the dependence of various physical quantities associated with the holo-

graphic model of superconductivity on the scaling dimensions of the dual condensates in

the (2 + 1) and (3 + 1)-dimensional boundary theories. Each of these physical quantities

was calculated at a fixed temperature, but for different values of mass squared m2 (varied

in 0.5 unit intervals) in d = 3 and d = 4 bulk spacetime dimensions. We considered mainly

bulk scalar fields which have normalizable fall-offs at the AdS boundary. The results of this

indicate that, there are two distinct superconducting condensates dual to the two modes of

scalar field, which have different fall-off behaviors at the AdS boundary. The amount of the

condensate dual to the bulk scalar field with slower fall-off Ψλ
−

converges, before diverging

collectively near zero temperature. Its superconducting phase is different from that of the

scalar fields with a faster fall-off Ψλ+
. Certain features indicating a discontinuity in the

amount of condensates were observed between condensates of the class Ψλ
−

and those of

the class Ψλ+
at λ = λBF. This discontinuity distinguishes between the two classes. The

Ginzburg-Landau parameter κ, obtained from the superconducting coherence length ξ and

magnetic penetration depth λm, indicates that there is a critical scaling dimension λcrit at

which the holographic superconductors change from type II to type I. Type I holographic

superconductors have very low critical temperatures, unlike those of type II, which have

relatively high critical temperatures.

It would be very interesting to extend the computations presented in this paper to

include the effects of the backreaction of the scalar field on the gravitational background.

This would enable us to understand the source of the divergence for the condensates of the

class Ψλ
−

. A treatment involving a complete backreacted geometry would shed some light

on the class of condensate that would be associated with the vortex and droplets solutions

found in [18, 19]. Based on an understanding of real superconductors, one would not expect

a type I holographic superconductor to support a stable vortex solution. One might also

repeat the analysis presented here for the action, involving a matter field considered in [36].

This would indicate whether the features observed here are general, and might apply to an

entire class of theories with gravity duals.
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Figure 13. Plots of frequency dependent conductivity for condensates of class Ψλ
−

. The frequency

is normalized by the condensate in the superconducting phase. The plots are labelled by the

dimension of the operator in the dual field theory.

B Conductivity in (2+1)-dimensional boundary theory (λ+)
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Figure 14. Plots of the frequency dependent conductivity for condensates of class Ψλ+
. The

frequency is normalized by the condensate. The plots are labelled by the dimension of the operator

in the boundary theory

C Conductivity in (3+1)-dimensional dual field theory
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Figure 15. Plots of the conductivity versus the frequency normalized by the condensate in the

3+1 boundary theory. Each of the plots was calculated at T/Tc = 0.3 and they are labelled by the

dimension of the dual condensates.
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